Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.150
Filtrar
1.
Rocz Panstw Zakl Hig ; 75(1): 75-81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38587107

RESUMO

Background: Despite the extensive literature focused on propolis extract, few data exists on the bioactive compounds and biological activities in the Moroccan propolis and its economic value is low. Objective: In this research, the aim was to evaluate the total content of phenols and flavonoids as well as the antioxidant, antibacterial and antifungal activities of Moroccan propolis. Material and Methods: The polyphenol and flavonoid content of the Moroccan propolis from three geographic regions, was quantified in the ethanolic extract by colorimetric methods using folin-ciocalteu and aluminum chloride. The antioxidant activity was evaluated by the DPPH test and expressed as IC50. Disk diffusion and broth microdilution methods were used to examine in vitro antimicrobial activity against known human microorganism pathogens. Results: The obtained data revealed that Moroccan propolis samples presented significant variations in total polyphenols and flavonoids. All samples showed significant antioxidant activity with IC50 values ranging from 4.23±0.5 to 154±0.21 µg/ mL. A strong correlation between total phenolic activity, flavonoids and antioxidant activity was found. The in vitro study of antibacterial activity showed that the propolis samples exhibited a range of growth inhibitory actions against all bacterial strains tested with the highest activity against gram-positive bacteria. Only propolis from the Sidi Bennour region demonstrated an antifungal activity. Conclusion: The study data show that Moroccan propolis extracts have a promising content of antioxidant and antimicrobial compounds that could be exploited to prevent certain diseases linked to oxidative stress and pathogenic infections.


Assuntos
Anti-Infecciosos , Própole , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Flavonoides/farmacologia , Própole/farmacologia , Própole/química , Antifúngicos/farmacologia , Fenóis/farmacologia , Polifenóis , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia
2.
Food Chem ; 447: 138928, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38484547

RESUMO

In this study, we established a simple, rapid, and high-throughput method for the analysis and classification of propolis samples. We utilized nanoESI-MS to analyze 37 samples of propolis from China for the first time, obtaining characteristic fingerprint spectra in negative ion mode, which were then integrated with multivariate analysis to explore variations between water extract of propolis (WEP) and ethanol extract of propolis (EEP). Furthermore, we categorized propolis samples based on different climate zones and colors, screening 10 differential metabolites among propolis from various climate zones, and 11 differential metabolites among propolis samples of different color. By employing machine learning models, we achieved high-precision discrimination and prediction between samples from different climate zones and colors, achieving predictive accuracies of 95.6% and 85.6%, respectively. These results highlight the significant potential of the nanoESI-MS coupled with machine learning methodology for precise classification within the realm of food products.


Assuntos
Ascomicetos , Própole , Própole/química , Espectrometria de Massas , Clima , Aprendizado de Máquina , Espectrometria de Massas por Ionização por Electrospray/métodos
3.
Appl Radiat Isot ; 207: 111254, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430826

RESUMO

The irradiation effects on antioxidant potential and on content of phenolic compounds of propolis ethanoic extracts were studied. It was found out that gamma treatment of samples with 2 and 10 kGy had a weak decreasing effect on the total phenolic content (TPC), while no change was observed in the propolis irradiated with 5 kGy. The antiradical activity of extracts was assessed by the DPPH free radical scavenging activity evaluated by Electron Paramagnetic Resonance (EPR) spectroscopy. The EPR results were in agreement with TPC. Some main phenolic compounds of the studied non-irradiated and irradiated samples were identified and compared by ultra-high performance liquid chromatography (UHPLC).


Assuntos
Antioxidantes , Própole , Própole/química , Fenóis/química
4.
Food Funct ; 15(5): 2550-2562, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38348773

RESUMO

Bee pollen and bee bread go hand in hand with health-promoting functional food consumption. Although many studies report high bioactivities of those products, the biotransformation of pollen into bee bread has not been fully understood. Limited findings are available about polyphenol bioaccessibility and microbiological interactions during the fermentation process. This study evaluated the microbial flora, antioxidant properties, and polyphenol and soluble protein bioaccessibility of pollen and bee bread harvested from the same apiary over a certain timeline. Total phenolic content, antioxidant activity and soluble protein content were reported using an in vitro digestion model involving post-gastric, serum-available, and colon-available fractions. The results obtained with the in vitro digestion model refer to the effect of the harvesting period on greater bioaccessibility of polyphenols in bee bread than in pollen at the same apiary. Lactic acid bacteria and yeast found in the samples were mostly identified as Lactobacillus kunkeei, Leuconostoc pseudomesenteroides, and Candida magnoliae using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). The discrimination between the pollen and bee bread samples collected in the same apiary and at different harvesting periods was also revealed by Principal Component Analysis (PCA). A harvesting time-based approach was applied to the biotransformation process of pollen and bee bread, and insights into microbial dynamics and bioaccessibility were revealed for the first time under the same beehive conditions.


Assuntos
Lactobacillales , Própole , Própole/química , Polifenóis/metabolismo , Fenóis/análise , Pólen
5.
Int J Biol Macromol ; 261(Pt 1): 129578, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246454

RESUMO

Guar gum (GG) composite films, incorporating the ethanolic extract of propolis (EEP), were prepared and subjected to a comprehensive investigation of their functional characteristics. The addition of EEP resulted in a discernible enhancement in the opacity, moisture barrier capacity, and elongation at break. Incorporating EEP led to a noteworthy increase in the total phenolic and total flavonoid content of the films, resulting in superior antioxidant capacity upon GG-EEP films. Remarkably, the addition of 5 % EEP yielded noteworthy outcomes, manifesting in a DPPH radical scavenging rate of 47.60 % and the ABTS radical scavenging rate of 94.87 %, as well as FRAP and cupric reducing power of 331.98 mmol FeSO4-7H2O kg-1 and 56.95 µg TE mg-1, respectively. In addition, GG-EEP films demonstrated antifungal effect against Penicillium expansum and Aspergillus niger, along with a sustained antibacterial effect against Escherichia coli and Staphylococcus aureus. GG-EEP films had superior inhibitory ability against Gram-positive bacteria than Gram-negative bacteria. Crucially, GG-EEP composite films played a pivotal role in reducing both lesion diameter and depth, concurrently mitigating weight loss and firmness decline during the storage period of "Nanguo" pears. Therefore, GG-EEP composite films have the considerable potential to serve as advanced and effective active packaging materials for food preservation.


Assuntos
Galactanos , Mananas , Própole , Pyrus , Própole/farmacologia , Própole/química , Gomas Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Etanol
6.
Chem Biodivers ; 21(4): e202301758, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38241641

RESUMO

Propolis was collected from honeybee hives in three geographically distinct Algerian climates and extracts were characterized for composition and bioactivity. Bees were identified as native subspecies using an in-silico DraI mtDNA COI-COII test. Over 20 compounds were identified in extracts by LC-MS. Extracts from the Medea region were more enriched in phenolic content (302±28 mg GAE/g of dry extract) than those from Annaba and Ghardaia regions. Annaba extracts had the highest flavonoid content (1870±385 mg QCE/g of dry extract). Medea extracts presented the highest free-radical scavenging activity (IC50=13.5 µg/mL) using the DPPH radical assay while Ghardaia extracts from the desert region were weak (IC50>100 µg/mL). Antioxidant activities measured using AAPH oxidation of linoleic acid were similar in all extracts with IC50 values ranging from 2.9 to 4.9 µg/mL. All extracts were cytotoxic (MTT assay) and proapoptotic (Annexin-V) against human leukemia cell lines in the low µg/mL range, although the Annaba extract was less active against the Reh cell line. Extracts inhibited cellular 5-lipoxygenase product biosynthesis with IC50 values ranging from 0.6 to 3.2 µg/mL. Overall, examined propolis extracts exhibited significant biological activity that warrant further characterization in cellular and in vivo models.


Assuntos
Antioxidantes , Própole , Animais , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Própole/farmacologia , Própole/química , Araquidonato 5-Lipoxigenase , Extratos Vegetais/química , Fenóis/farmacologia , Flavonoides/farmacologia
7.
J Sci Food Agric ; 104(4): 2189-2197, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37934121

RESUMO

BACKGROUND: The heat sensitivity of phenolics and flavonoids leads to considerable losses of these compounds during conventional drying. Microwave drying has the advantage of shorter drying time and rigorous process control, minimizing damage to heat-sensitive compounds. Microwave drying kinetics and the impacts of microwave drying on physicochemical characteristics, morphological structure, antioxidant properties, total phenolics, and flavonoid content of propolis extract were investigated. RESULTS: Increasing the microwave power output from 180 to 900 W resulted in a 67% reduction in drying time. Morphological changes were more noticeable at higher microwave power levels as shown in scanning electron microscopy images. Water activity values of microwave dried propolis extracts were below 0.4, which satisfied the requirement for shelf-stable dry products. The solubility of microwave dried propolis extract increased with increasing microwave power level, and the highest solubility was achieved for the propolis extract microwave dried at 900 W. Microwave dried propolis extracts exhibited lower total phenolic content levels than fresh propolis extract. The microwave power level did not affect the total flavonoid content but it affected 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging activity of microwave dried propolis extracts. The DPPH free-radical scavenging activity closest to the fresh propolis extract was obtained for the microwave dried propolis extract at 900 W. This also showed the highest 6-hydroxy-2,5,7,8-tetramethyl-2-carboxylic acid (Trolox) equivalent antioxidant capacity. CONCLUSION: Microwave drying of propolis extract at 900 W was found to be the most efficient drying condition because it yielded the shortest drying time, the highest effective moisture diffusivity, and phenolic and flavonoid content levels that were very similar to those in fresh propolis extract. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Própole , Antioxidantes/química , Própole/química , Micro-Ondas , Flavonoides/farmacologia , Extratos Vegetais/química
8.
Toxicon ; 237: 107352, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38052333

RESUMO

Three prenylated flavonoids (1-3) were isolated from Tetragonula biroi propolis. The structures of the isolated compounds were characterized by NMR, IR, and UV spectroscopic and mass spectrometric analyses. The cytotoxicity activity of the crude extracts, fractions and the isolated compounds were established against four cell lines such as Caco-2, HeLa, MCF-7, and OVK-18. Among the tested compounds, compound 1 showed cytotoxicity activity against MCF-7 cell lines, whereas compound 2 showed good activity against Caco-2 and OVK-18 cell lines with IC50 values of 14.73 and 14.44, respectively. Moreover, compound 3 exhibited strong activity against OVK-18 cell lines. These findings contribute to the phytochemical understanding of the T. biroi propolis, and their cytotoxicity effects for future pharmaceutical purposes.


Assuntos
Própole , Abelhas , Animais , Humanos , Própole/farmacologia , Própole/química , Células CACO-2 , Misturas Complexas , Compostos Fitoquímicos/toxicidade
9.
Chem Biodivers ; 21(2): e202301333, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38116898

RESUMO

Propolis is one functional supplement with hundreds of years of usage. However, it's rarely consumed directly for its resinous property. Herein, a pre-treated process which can remove the impurity while preserve its bioactivities is needed to maximise its therapeutic opportunities. In the present study, a membrane-based ultrafiltration process was developed on a KM1812-NF experimental instrument. Using Brazilian green propolis as testing material, all experimental steps and parameters were sequentially optimized. In addition, a mathematical model was developed to fit the process. As a result, the optimum solvent was 60 % ethanol adjusted to pH 8-9, while the optimum MWCO (molecular weight cut-off) value of membrane was 30 KDa. The membrane filtration dynamic model fitted with the function y=(ax+b)/(1+cx+dx2 ). The resulting propolis ultrafiltrate from Brazilian green propolis, termed P30K, contains the similar profile of flavonoids and phenolic acids as raw propolis. Meanwhile, the ORAC (oxygen radical absorbance capacity) value of P30K is 11429.45±1557.58 µM TE/g and the IC50 value of inhibition of fluorescent AGEs (advanced glycation end products) formation is 0.064 mg/mL. Our work provides an innovative alternative process for extraction of active compounds from propolis and reveals P30K as an efficient therapeutic antioxidant.


Assuntos
Antioxidantes , Própole , Antioxidantes/farmacologia , Antioxidantes/química , Própole/farmacologia , Própole/química , Flavonoides/química , Etanol/química , Solventes
10.
Molecules ; 28(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38067542

RESUMO

Chagas disease (CD) is a worldwide public health problem, and the drugs available for its treatment have severe limitations. Red propolis is a natural extract known for its high content of phenolic compounds and for having activity against T. cruzi. The aim of this study was to investigate the trypanocidal potential of red propolis to isolate, identify, and indicate the mode of action of the bioactive compounds. The results revealed that the total phenolic content was 15.4 mg GAE/g, and flavonoids were 7.2 mg QE/g. The extract was fractionated through liquid-liquid partitioning, and the trypanocidal potential of the samples was evaluated using the epimastigote forms of the Y strain of T. cruzi. In this process, one compound was characterized by MS, 1H, and 13C NMR and identified as vestitol. Cytotoxicity was evaluated employing MRC-5 fibroblasts and H9C2 cardiomyocytes, showing cytotoxic concentrations above 15.62 µg/mL and 31.25 µg/mL, respectively. In silico analyses were applied, and the data suggested that the substance had a membrane-permeation-enhancing effect, which was confirmed through an in vitro assay. Finally, a molecular docking analysis revealed a higher affinity of vestitol with farnesyl diphosphate synthase (FPPS). The identified isoflavan appears to be a promising lead compound for further development to treat Chagas disease.


Assuntos
Doença de Chagas , Própole , Tripanossomicidas , Trypanosoma cruzi , Humanos , Própole/química , Simulação de Acoplamento Molecular , Doença de Chagas/tratamento farmacológico , Flavonoides/química , Extratos Vegetais/farmacologia , Tripanossomicidas/química
11.
Molecules ; 28(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005199

RESUMO

Propolis, owing to its antibacterial and anti-inflammatory properties, acts as a cariostatic agent, capable of preventing the accumulation of dental plaque and inhibiting inflammation. The anti-inflammatory properties of propolis are attributed to caffeic acid phenethyl ester (CAPE), which is present in European propolis. The objective of the conducted study was to assess the anti-inflammatory effects of the Polish ethanolic extract of propolis (EEP) and isolated CAPE on stimulated with LPS and IFN-α, as well as the combination of LPS and IFN-α. The cytotoxicity of the tested compounds was determined using the MTT assay. The concentrations of specific cytokines released by the HGF-1 cell line following treatment with EEP (25-50 µg/mL) or CAPE (25-50 µg/mL) were assessed in the culture supernatant. In the tested concentrations, both CAPE and EEP did not exert cytotoxic effects. Our results demonstrate that CAPE reduces TNF-α and IL-6 in contrast to EEP. Propolis seems effective in stimulating HGF-1 to release IL-6 and IL-8. A statistically significant difference was observed for IL-8 in HGF-1 stimulated by LPS+IFN-α and treated EEP at a concentration of 50 µg/mL (p = 0.021201). Moreover, we observed that CAPE demonstrates a stronger interaction with IL-8 compared to EEP, especially when CAPE was administered at a concentration of 50 µg/mL after LPS + IFN-α stimulation (p = 0.0005). Analysis of the phenolic profile performed by high-performance liquid chromatography allowed identification and quantification in the EEP sample of six phenolic acids, five flavonoids, and one aromatic ester-CAPE. Propolis and its compound-CAPE-exhibit immunomodulatory properties that influence the inflammatory process. Further studies may contribute to explaining the immunomodulatory action of EEP and CAPE and bring comprehensive conclusions.


Assuntos
Própole , Humanos , Própole/farmacologia , Própole/química , Lipopolissacarídeos , Interleucina-6 , Interleucina-8 , Polônia , Etanol , Linhagem Celular , Fenóis/farmacologia , Fenóis/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Fibroblastos
12.
BMC Microbiol ; 23(1): 325, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37924042

RESUMO

BACKGROUND: This research evaluated the anti-Candida albicans effect of Mexican propolis from Chihuahua. Chemical composition of the ethanolic extract of propolis was determined by GC-MS, HPLC-DAD, and HPLC-MS. The presence of anthraquinone, aromatic acid, fatty acids, flavonoids, and carbohydrates was revealed. RESULTS: The anti-Candida activity of propolis was determined. The inhibitions halos were between 10.0 to 11.8 mm; 25% minimum inhibitory concentration (0.5 mg/ml) was fungistatic, and 50% minimum inhibitory concentration (1.0 mg/ml) was fungicidal. The effect of propolis on the capability of C. albicans to change its morphology was evaluated. 25% minimum inhibitory concentration inhibited to 50% of germ tube formation. Staining with calcofluor-white and propidium iodide was performed, showing that the propolis affected the integrity of the cell membrane. INT1 gene expression was evaluated by qRT-PCR. Propolis significantly inhibited the expression of the INT1 gene encodes an adhesin (Int1p). Chihuahua propolis extract inhibited the proliferation of Candida albicans, the development of the germ tube, and the synthesis of adhesin INT1. CONCLUSIONS: Given the properties demonstrated for Chihuahua propolis, we propose that it is a candidate to be considered as an ideal antifungal agent to help treat this infection since it would not have the toxic effects of conventional antifungals.


Assuntos
Candida albicans , Própole , Própole/farmacologia , Própole/química , Fatores de Virulência , México , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Proliferação de Células
13.
Molecules ; 28(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894560

RESUMO

BACKGROUND: The chemistry of Costa Rican propolis from Apis mellifera remains underexplored despite its potential applications. This study identified its chemical composition, linking chemotypes to antioxidant potential. METHODS: Proton nuclear magnetic resonance (1H NMR) spectra were obtained for 119 propolis extracts and analyzed using multivariate analyses. In parallel, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay was used to assess antioxidant activity. A generalized linear regression model (GLM) correlated this with its chemical profiles and geographical origin. Chromatographic methods were used to isolate active and inactive compounds, which were identified using nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). RESULTS: Principal component analysis (PCA) revealed three chemical profile groups for the 119 propolis extracts, explaining 73% of the total variance with two components. Radical scavenging activity was found to correlate with chemical composition. Isolation yielded n-coniferyl benzoate in type I (EC50 = 190 µg/mL, ORAC = 0.60 µmol TE/µmol) and nemorosone in type II (EC50 = 300 µg/mL, ORAC = 0.7 µmol TE/µmol). Type III was represented in terpene-like components, which exhibited lower antioxidant activity. CONCLUSIONS: This study categorizes Costa Rican propolis into three chemical types and identifies two key components linked to antioxidant activity. Notably, nemorosone, a valuable natural product, was found to be highly concentrated in a particular region of Costa Rica.


Assuntos
Própole , Animais , Própole/química , Antioxidantes/química , Costa Rica , Benzofenonas/química
14.
Food Res Int ; 173(Pt 1): 113345, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803652

RESUMO

Red propolis from northeast Brazil contains mainly isoflavonoids as bioactive compounds, and its consumption may counteract unregulated and exacerbated formation of reactive oxygen species and inflammatory cytokines/chemokines. Moreover, the production of particles using sustainable carriers have been studied to increase the use of propolis as a functional food ingredient. Hence, the objective of this work was to investigate the effects of simulated gastrointestinal digestion followed by a cell-based epithelial transport on phenolic profile, anti-inflammatory and antioxidant activities of particles of brewer's spent yeasts (BSY) loaded with ethanolic extract of Brazilian red propolis (EEP). As a result, the EEP phenolic diversity decreased throughout the simulated gastrointestinal system, and was modulated by the particle production, as detected by high-performance liquid chromatography - electrospray ionization - quadrupole-time-of-flight-mass spectrometry (HPLC-ESI-QTOF-MS). Concomitantly, the antioxidant activity, as assessed by the ability to scavenge peroxyl and superoxide radicals, hydrogen peroxide, and hypochlorous acid, generally decreased at a higher extent for the particles of EEP with BSY (EEP-BSY) throughout the experiments. Nonetheless, after epithelial transport through the Caco-2 cell monolayer, the basolateral fraction of both EEP-BSY and EEP decreased the activation of pro-inflammatory transcription factor NF-κB by 83% and 65%, respectively, as well as the release of TNF-α (up to 51% and 38%, respectively), and CXCL2/MIP-2 (up to 33% and 25%, respectively). Therefore, BSY may be an interesting carrier for EEP bioencapsulation, since it preserves its anti-inflammatory activity. Further studies should be encouraged to investigate the feasibility of adding it in formulations of functional foods, considering its effect on sensory attributes.


Assuntos
Própole , Saccharomyces cerevisiae , Humanos , Própole/farmacologia , Própole/química , Brasil , Células CACO-2 , Fenóis/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Digestão
15.
Chem Biodivers ; 20(11): e202301238, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769153

RESUMO

Sixteen triterpenoids with various skeletal types, five phenylpropanoid derivatives, and two flavonoids were isolated from a propolis sample produced by Apis mellifera collected in the Atlantic Forest of Midwest Brazil. Among these compounds, six triterpenes, namely 3ß,20R-dihydroxylanost-24-en-3-yl-palmitate, (23E)-25-methoxycycloartan-23-en-3-one, 24-methylenecycloartenone, epi-lupeol, epi-α-amyrin, and epi-ß-amyrin are being reported for the first time in propolis, while cycloartenone, (E)-cinnamyl benzoate, and (E)-cinnamyl cinnamate are new findings in Brazilian propolis. The presence of cycloartane- and lanostane-type triterpenoids, the latter being a class of compounds of restricted distribution in propolis worldwide, has not been reported in propolis from Midwest Brazil until now. The ethyl acetate phase obtained from the ethanol extract was effective in preventing biofilm formation by Staphylococcus aureus, with an inhibition rate of about 96 % at 0.5 mg.mL-1 , and with quercetin isolated as one of its active constituents. In contrast, the hexane phase exhibited notable antibacterial activity against Pseudomonas aeruginosa, inhibiting bacterial growth by 92 % at 0.5 mg.mL-1 ; however, none of the triterpenoids isolated from this phase proved active against this pathogen. The ethanol extract was neither toxic nor mutagenic at the concentrations tested, as determined by the in vivo SMART assay on Drosophila melanogaster, even under conditions of high metabolic activation.


Assuntos
Ascomicetos , Própole , Triterpenos , Animais , Própole/farmacologia , Própole/química , Brasil , Mutagênicos , Drosophila melanogaster , Antibacterianos/química , Etanol , Biofilmes , Extratos Vegetais , Testes de Sensibilidade Microbiana
16.
Molecules ; 28(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687052

RESUMO

Secretory phospholipase B1 (PLB1) and biofilms act as microbial virulence factors and play an important role in pulmonary cryptococcosis. This study aims to formulate the ethanolic extract of propolis-loaded niosomes (Nio-EEP) and evaluate the biological activities occurring during PLB1 production and biofilm formation of Cryptococcus neoformans. Some physicochemical characterizations of niosomes include a mean diameter of 270 nm in a spherical shape, a zeta-potential of -10.54 ± 1.37 mV, and 88.13 ± 0.01% entrapment efficiency. Nio-EEP can release EEP in a sustained manner and retains consistent physicochemical properties for a month. Nio-EEP has the capability to permeate the cellular membranes of C. neoformans, causing a significant decrease in the mRNA expression level of PLB1. Interestingly, biofilm formation, biofilm thickness, and the expression level of biofilm-related genes (UGD1 and UXS1) were also significantly reduced. Pre-treating with Nio-EEP prior to yeast infection reduced the intracellular replication of C. neoformans in alveolar macrophages by 47%. In conclusion, Nio-EEP mediates as an anti-virulence agent to inhibit PLB1 and biofilm production for preventing fungal colonization on lung epithelial cells and also decreases the intracellular replication of phagocytosed cryptococci. This nano-based EEP delivery might be a potential therapeutic strategy in the prophylaxis and treatment of pulmonary cryptococcosis in the future.


Assuntos
Antifúngicos , Biofilmes , Cryptococcus neoformans , Proteínas Fúngicas , Lisofosfolipase , Macrófagos Alveolares , Própole , Humanos , Biofilmes/efeitos dos fármacos , Linhagem Celular Tumoral , Criptococose/prevenção & controle , Criptococose/terapia , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/patogenicidade , Etanol/química , Proteínas Fúngicas/antagonistas & inibidores , Lipossomos , Pneumopatias Fúngicas/prevenção & controle , Pneumopatias Fúngicas/terapia , Lisofosfolipase/antagonistas & inibidores , Macrófagos Alveolares/microbiologia , Própole/química , Própole/farmacologia , Virulência/efeitos dos fármacos , Fatores de Virulência/antagonistas & inibidores , Antifúngicos/química , Antifúngicos/farmacologia
17.
Chem Biodivers ; 20(11): e202300931, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776535

RESUMO

Bacteria are associated with many infections that affect humans and present antibiotic resistance mechanisms, causing problems in health organisations and increased mortality rates. Therefore, it is necessary to find new antibacterial agents that can be used in the treatment of these microorganisms. Geopropolis is a natural product from stingless bees, formed by a mixture of plant resins, salivary secretions, wax and soil particles, the chemical composition of this natural product is diverse. Thus, this study aimed to evaluate antibacterial activity, antibiotic modulation and the toxicity of geopropolis extracts from the stingless bees, Melipona subnitida (Ducke, 1910) and Scaptotrigona depilis (Moure, 1942) against standard and multi-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacteria. Geopropolis samples were collected in a meliponary located in Camaragibe, Pernambuco, Brazil. To determine the Minimum Inhibitory Concentration (MIC) and antibiotic modulation we performed broth microdilution tests. Mortality tests were used to verify extract toxicity in the model Drosophila melanogaster. The microbiological tests showing that the M. subnitida extracts had better inhibitory effects compared to S. depilis, presenting direct antibacterial activity against standard and multi-resistant strains. The extracts potentialized antibiotic effects, suggesting possible synergy and did not present toxicity in the model used. The information obtained in this study highlights extracts as promising antibacterial agents and is the first study to evaluate bacterial activity in these extracts, in addition to verifying their modulating effects and determining toxicity in the model used.


Assuntos
Himenópteros , Staphylococcus aureus Resistente à Meticilina , Própole , Abelhas , Humanos , Animais , Drosophila melanogaster , Própole/química , Antibacterianos/farmacologia , Pseudomonas , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia
18.
Molecules ; 28(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570819

RESUMO

The aim of the study was to compare the nutritional value and bioactivity of honey enriched with a 10% addition of natural bee bread and its substitutes obtained as a result of laboratory fermentation of bee pollen. Physicochemical parameters, antioxidant properties, as well as the bioaccessibility of proteins using an in vitro static digestion model were analyzed. The bioactivity of the obtained enriched honeys was tested using the yeast model. The research indicates the similarity of honeys with the addition of "artificial bee bread" to honey with natural ones. During in vitro digestion, good bioaccessibility of the protein from the tested products was demonstrated. The ability of the products to protect yeast cells against hydrogen superoxide-induced oxidative stress was demonstrated using a qualitative spot test, which was stronger in the case of enriched honey than in pure rapeseed control honey. Significant inhibition of the growth of both strains of yeast exposed to bee pollen-enriched honeys was also demonstrated. Furthermore, all tested samples showed significant genoprotective activity against the genotoxic effect of zeocin and the reduction of the number of DNA double-strand breaks by a minimum of 70% was observed.


Assuntos
Mel , Própole , Abelhas , Mel/análise , Própole/química , Antioxidantes/farmacologia , Antioxidantes/análise , Saccharomyces cerevisiae , Pólen/química
19.
Molecules ; 28(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513368

RESUMO

In this study, propolis additives provide antibacterial and antifungal effects that prolong the product's shelf life. The aim of the study is to obtain homogeneous fiber membranes of polyvinyl alcohol and propolis by the electrospinning method and to evaluate their suitability for food packaging. Three propolis extracts are used in the study-water, ethyl alcohol, and glycerin-based. The membranes' morphology and fiber diameter distribution, tensile deformation, air permeability, thermogravimetric analysis, differential scanning calorimetry, Fourier-transform infrared spectroscopy, and microbiological tests (Listeria monocytogenes, Salmonella enteritidis, Escherichia coli) were analyzed for electrospun samples. The results of the study show that propolis extracts are incorporated into membranes and the additive provides an antimicrobial effect with the contact surface. The obtained membranes are breathable: gas exchange can be controlled by using a material of appropriate thickness (air permeability coefficient is 0.046 and 0.276 mm/s). The mechanical properties of membranes are affected by moisture, but tensile strength can be improved with thermal post-processing at 100 °C. The propolis-containing fibers' diameters are from 293 ± 8 to 664 ± 11 nm. Depending on membranes' demonstrated properties, it can be concluded that the composites have the potential to increase the shelf life of fresh fruits and berries.


Assuntos
Filmes Comestíveis , Própole , Própole/química , Embalagem de Alimentos/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Resistência à Tração
20.
Chem Biodivers ; 20(8): e202300592, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37432091

RESUMO

We aimed to characterize and investigate the antibacterial potential of the native stingless bees geopropolis volatile oils (VO) for the search of potentially new bioactive compounds. Geopropolis samples from Melipona bicolor schencki, M. compressipes manaosensis, M. fasciculata, M. quadrifasciata, M. marginata and M. seminigra merrillae were collected from hives in South Brazil. VO were obtained by hydrodistillation and characterised by gas chromatography coupled to mass spectrometry (GC/MS). Antimicrobial activity was assessed by microplate dilution method. The lowest MIC against cell walled bacteria was 219±0 µg mL-1 from M. quadrifasciata geopropolis VO with Staphylococcus aureus. The M. b. schencki geopropolis VO minimal inhibition concentration (MIC) was 424±0 µg mL-1 against all the mycoplasma strains evaluated. Fractionation resulted in the reduction of 50 % of the MIC value from the original oil. However, its compounds' synergism seems to be essential to this activity. Antibiofilm assays demonstrated 15.25 % eradication activity and 13.20 % inhibition of biofilm formation after 24 h for one subfraction at 2× its MIC as the best results found. This may be one of the essential mechanisms by which geopropolis VOs perform their antimicrobial activity.


Assuntos
Óleos Voláteis , Própole , Abelhas , Animais , Própole/química , Óleos Voláteis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/análise , Staphylococcus aureus , Biofilmes , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...